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Towards LLM-Powered Verilog RTL Assistant: 
Self-Verification and Self-Correction 

Overview

Programming

Compilation

Ayudante Framework
• Two key components 

- 1. Deep reinforcement learning (RL)-based code generator 
- 2. Code refining pipeline 
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Optimization J

Comprehensiveness J
Security J

Correctness J

Ayudante [ATC ’21]

Q-gym [PACT ’22]
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VeriAssist
[On-going]

Development

𝐻𝑎𝑛𝑥𝑖𝑎𝑛 𝐻𝑢𝑎𝑛𝑔!, 𝑍ℎ𝑒𝑛𝑔ℎ𝑎𝑛 𝐿𝑖𝑛", 𝑍𝑖𝑥𝑢𝑎𝑛 𝑊𝑎𝑛𝑔!, 𝑋𝑖𝑛 𝐶ℎ𝑒𝑛#, 𝐾𝑒 𝐷𝑖𝑛𝑔#, 𝐽𝑖𝑠ℎ𝑒𝑛 𝑍ℎ𝑎𝑜!
𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑜𝑓 𝐶𝑎𝑙𝑖𝑓𝑜𝑟𝑛𝑖𝑎 𝑆𝑎𝑛 𝐷𝑖𝑒𝑔𝑜!, 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑜𝑓 𝐶𝑎𝑙𝑖𝑓𝑜𝑟𝑛𝑖𝑎 𝐵𝑒𝑟𝑘𝑒𝑙𝑒𝑦", 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑀𝐿 𝐺𝑟𝑜𝑢𝑝 𝐼𝑛𝑡𝑒𝑙 𝐶𝑜𝑟𝑝.#

* Will be presented at HotChips 2024 tutorial  

Background and Motivation:
§ Complexity of Traditional RTL Design 

○ Describe architectures and behaviors at a granular level
§ Differences between HDLs and General-Purpose PLs

○ RTL design is more complex considering timing constraints
○ RTL verification is hard considering efficiency and coverage
○ Existing code-LLMs are not tailored for RTL design

Evaluation:
• Metrics: syntax pass rate, functionality pass rate, PPA
• pass@k: a problem is considered solved if any of the k 

samples pass the unit tests.
• VeriAssist suggests high-quality RTL code with an 

average pass@5 score of 72.3% and comparable PPA, 
along with corresponding test benches.

Fasor: A Fast Tensor Program Optimization Framework 
for Efficient DNN Deployment 

𝐻𝑎𝑛𝑥𝑖𝑎𝑛 𝐻𝑢𝑎𝑛𝑔!, 𝑋𝑖𝑛 𝐶ℎ𝑒𝑛", 𝐽𝑖𝑠ℎ𝑒𝑛 𝑍ℎ𝑎𝑜!
𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑜𝑓 𝐶𝑎𝑙𝑖𝑓𝑜𝑟𝑛𝑖𝑎 𝑆𝑎𝑛 𝐷𝑖𝑒𝑔𝑜!, 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑀𝐿 𝐺𝑟𝑜𝑢𝑝 𝐼𝑛𝑡𝑒𝑙 𝐶𝑜𝑟𝑝."

Ayudante: A Deep Reinforcement 
Learning Approach to Assist 

Persistent Memory Programming
Hanxian Huang, Zixuan Wang, Juno Kim, Steven Swanson, Jishen Zhao

University of California San Diego

Background and Motivation:
§ Persistent Memory (PM)

○ Comparable performance of DRAM +  Persistence property of storage Persistent Memory (PM)
§ PM-aware programming

○ Adopt PM library to maintain crash consistency and recover failure
§ Challenges in PM-aware programming

○ Non-trivial labor effort, error-prone
○ Require detailed PM programming knowledge

Figure 1: Ayudante framework overview. The framework takes conventional C, C++, or Java source code for volatile memory as
an input and generates the corresponding PM code. Ayudante leverages a RL-based method to automatically translate the volatile
version of source code to a nonvolatile version by inserting proper PM library annotations. In addition, Ayudante generates a
code refining report to help reduce bugs and improve run-time performance.

memory-based code on traditional programming semantics
that they are familiar with.

Due to the similarity to neural machine translation (NMT)
problems in natural language processing (NLP), program
translation is recently demonstrated to have promising results
by adapting NMT techniques, such as sequence-to-sequence
models [35, 79], word embedding [9, 12, 56], and tree-to-tree
LSTM encoder-decoder on abstract syntax tree (AST) [11,14].
However, the existing machine learning (ML)-based program
translation methods focused on simple programs and data
structures; the models fall short of handling sophisticated
program syntax, data structures, and consistency reasoning,
which yield large and complex search spaces [11, 14]. To
this challenge, we integrate our RL model with Monte-Carlo
tree search and carefully design our neural network architec-
tures to improve generation efficiency. Furthermore, we adopt
transfer learning to train the model for Java code generation
based on the model trained for C and C++ languages to reduce
training time. In summary, this paper makes the following
contributions:
• We propose Ayudante, the first deep RL-based PM program-

ming assistant framework, which automatically transforms
volatile memory code to PM code. Our RL model mimics
the behavior of expert PM programmers navigating through
the input source code to add proper PM functions and in-
structions. We augment the RL model with Monte-Carlo
tree search strategy to achieve efficient generation.

• We leverage a novel transfer learning model to transfer the
PM programming semantics from the existing libraries of
one programming language to another. In particular, this
paper shows an example of transferring the knowledge
of PM programming semantics from C/C++ to Java, sav-
ing training time for Java-based PM code generator. This
approach sheds light on adapting PM code generation in
various languages at low extra effort.

• We evaluate Ayudante with microbenchmarks incorporat-
ing various data structures and a key-value store applica-
tion. Our results show that all the generated PM code passes
PMDK checkers, with comparable performance on an Intel

Optane DC PM server as code handwritten by experts.
• Ayudante assists novice PM programmers by reducing their

time and energy spent on learning new PM libraries, au-
tomating the modifications on legacy code, and facilitating
bug detection and performance tuning.

2 Background and Motivation
We motivate our Ayudante framework by PM programming
challenges and opportunities in deep RL.

2.1 PM Programming Common Practice
PM systems introduce a new set of programming semantics

that diverges from the conventional storage systems program-
ming. Instead of extensively relying on slow system calls to
access the persistent data, programmers now directly commu-
nicate with the byte-addressable nonvolatile main memory
(NVMM) using load and store instructions. As PM combines
the traits of both memory and storage, PM system requires
crash consistency without hurting the memory-like access
performance. One common practice of PM programming
is to first use a PM-aware filesystem [20, 78] to manage a
large memory region in NVMM. An application can then
use a direct access (DAX) mmap() system call provided by
the filesystem to map a nonvolatile memory region into its
address space. From there, the application can directly ac-
cess the NVMM. This programming model is portable and
achieves high performance by reducing costly system calls
that are on the critical paths [34, 80].

The PM programming model avoids directly using filesys-
tem system calls for data accesses, making it difficult to use
the conventional storage system’s crash consistency and fail-
ure recovery mechanisms that extensively use system calls.
As a result, PM programs need to maintain crash consistency
and develop recovery mechanisms by themselves, rather than
simply relying on the underlying filesystems. It is the pro-
grammers’ responsibility to provide the crash consistency
along with a proper recovery mechanism. Because PM pro-
grams rely on load and store instructions to access PM, a
single mis-ordered store instruction or a missing cacheline
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data [21, 29]. RL [69, 70] is a category of ML techniques
that tackles the decision making problems. Deep RL [21, 29,
50, 51] augments deep neural networks with RL to enable
automatic feature engineering and end-to-end learning [21].
We observed that deep RL is a better solution than RL for
problems with higher dimensional complexity as it does not
rely on domain knowledge. Due to these promising features,
deep RL is widely used in games [51,53,68], robotics [36,38,
60], and natural language processing [65, 75].

No end-to-end frameworks currently exist to automatically
translate a piece of volatile memory code into PM code and
perform crash consistency checking. State-of-the-art PM li-
braries [17, 22, 27, 31, 42, 47] and debugging tools [44, 45, 54]
require programmers to annotate the code. Jaaru [24] does
not require programmer’s annotation but it relies on the pro-
gram crash to detect bugs. It is also impractical to enumerate
all the possible changes of each line of the code, while pass-
ing the checks of compilers and debugging tools. To address
these issues, it is critical to automate PM code transforma-
tion, while achieving a high PM checker passing rate at a low
transformation cost.

Fortunately, translating a volatile memory code into PM
code can be formulated as a decision problem for sequential
code editing, which is considered as solvable by deep RL.
Moreover, augmented with Monte-Carlo tree search [8, 18] –
a type of look-ahead search for decision making – deep RL
is able to search the decision results more efficiently and ef-
fectively. Previous automatic code generation and translation
studies focus on translation between different programming
languages [41] and addressing debugging syntax errors [26].
To our knowledge, this paper is the first to formulate a ML-
based PM program translation problem.

3 Ayudante Design
To embrace the opportunities and address the challenges de-
scribed above, we propose Ayudante, a deep RL-based pro-
gramming assistant framework as illustrated in Figure 1.

3.1 Ayudante Framework Overview
Ayudante consists of two key components: a deep RL-

based code generator and a code refining pipeline. Our
code generator takes conventional source code developed for
volatile memory systems as the input and generates a vanilla
PM code through a RL model. We design our RL model to
mimic programmer’s behavior on inserting PMDK library
annotations into the volatile version of code. In order to re-
duce the training time and effort, we first train our model
for C/C++ code by RL, and then employ transfer learning to
adapt our model to Java programs. We show that our model
is generalizable to various PM programs in our test set on
the open source Leetcode solution programs (Section 5). Our
code refining pipeline integrates multiple PM checking and
debugging tools to generate a report of syntax bugs (if any)
and suggestions on run-time performance optimization. The
report allows programmers to further improve and test the

code.
Ayudante offers the following promising automated char-

acteristics in assisting PM programming:
• Efficient PM code generation through a deep RL model

augmented with Monte-Carlo tree search, which efficiently
searches the correct code edits with significantly smaller
search space.

• Reduced bugs through a deep RL model pre-trained to
avoid bugs detected by checkers in the training environ-
ment.

• Code refining reports and improved performance
through a code refining pipeline for programmers to fur-
ther inspect the possible improvements to the generated
programs if necessary.

3.2 Deep RL-based Code Generator

Figure 4: Ayudante’s deep RL model consists of an agent and
an environment. During model training, the agent repeatedly
generates and sends actions to the environment based on the
rewards and states it receives.

We design a deep RL network that generates the PM code.
The trained network mimics the programmer’s behavior; it
navigates through the input source programs and adds proper
code in the corresponding locations. Figure 4 shows Ayu-
dante’s deep RL model, which consists of (a) an agent with
a policy and value network and (b) an environment. The pol-
icy and value network responds to a state (the encoded input
source code) and outputs an action (which navigates through
source code and inserts PM library functions). The environ-
ment applies the action to the last code state to generate a
new code state, and tests it by a set of PM code checkers to
return a reward to the agent. Details of integrating various
PM checkers in the environment are discussed in Section 4.4.

The model is trained on a volatile version of PMDK exam-
ple code [17] (by removing PM annotations). During training,
the policy and value network is updated for a better action
policy according to the reward function. After training offline,
the RL generator performs online inference to generate the
best actions and output a PM code according to the pre-trained
policy and value network. We test on the data structures from
open-source Leetcode solution code [6, 61, 83]. In the follow-
ing, we describe the details of our RL and transfer learning
models. Section 4 will discuss detailed implementation of
training and inference of our models and the datasets used for
training and testing.
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The trained network mimics the programmer’s behavior; it
navigates through the input source programs and adds proper
code in the corresponding locations. Figure 4 shows Ayu-
dante’s deep RL model, which consists of (a) an agent with
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The model is trained on a volatile version of PMDK exam-
ple code [17] (by removing PM annotations). During training,
the policy and value network is updated for a better action
policy according to the reward function. After training offline,
the RL generator performs online inference to generate the
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Methodology:

Evaluation:

(Section 3.3) will automatically generate code refining sug-
gestions if it identifies bugs or performance degradation that
requires programmer’s attention.

Figure 5: An example of a sequence of actions taken by the
trained agent to generate PM code based on its volatile mem-
ory version.

3.2.3 Policy and Value Network
The policy and value network (Figure 4) determines which
action to take based on an action-value function. In Ayudante,
we use deep Q-learning [50, 72], a representative and widely
adopted policy and value network. Q-learning is model-free
and generalized not to depend on any specific RL models.
In Q-learning, the function Q calculates an expected reward
given a set of states and actions, which includes the reward
of future subsequent actions. In Ayudante, we use deep Q-
learning to combine Q-learning with a deep neural network to
form a better end-to-end generator. The function Q is defined
as:

Q(st ,at) = (1�a)Q(st ,at)+a(rt + g ·max
a

Q(st+1,a)) (2)

where t represents a time step that requires an action to
be taken; st is a sequence of actions; at is the action; rt is
the reward. The decay rate is 0  a  1. The discount fac-
tor is 0  g  1. We apply such a Q function to our Deep Q
Network, working as an iterative decision making algorithm
outlined in Algorithm 1. The objective of deep Q-learning
is to minimize (Y �Q(f,a;q))2 based on sequences of ac-
tions and observations st = x1,a1,x2,a2, ...,at�1,xt . Here, Y
represents the expected reward, while Q(f;a;q) is the reward
calculated from the Q function, with trainable weight parame-
ters q. The Q function works on fixed-length representation
of code modification histories collected by function f. M is
the maximum number of epochs and T is the number of itera-
tion to modify the code used to simulate the descent process,
which are user-defined parameters. This process will also gen-
erate the training datasets of Q-learning, stored in a replay
memory D , with a maximum capacity N. When D is inquired
for a minibatch of transitions, it will return Yj and Q(f,a j;q).

Algorithm 1 The policy and value network function.
1: Initialize replay memory D to capacity N and random

initialize q
2: for epoch from 1 to M do
3: Initialize sequence s1 = {x1} and f1 = f(s1)
4: for t from 1 to T do
5: With probability < e select a random action at
6: Otherwise select at = maxa Q⇤(f(st),a;q)
7: Execute action at : navigate or insert an API
8: Get reward rt , and next state xt+1
9: Set st+1 = st ,at ,xt+1 and ft+1 = f(st+1)

10: Store transition (ft ,at ,rt ,ft+1) in D
11: Sample a minibatch of transitions (ft ,at ,rt ,ft+1)

from D
12: Set Yj = r j + gmaxa0 Q(f j+1,a0;q) for a non-

terminal f j+1 or Yj = r j for a terminal f j+1
13: Minimize Loss (Yj �Q(f j,a j;q))2

14: end for
15: end for

Figure 6: Neural architecture of the policy and value network.

Figure 6 shows the neural network architecture of our pol-
icy and value network. We first embed the input source code
with LSTM and a pooling layer. Then, we pass the embedded
state to three fully-connected layers. The Softmax function
will output the Q value; the action will be selected either by
maximizing the reward or with a small probability to play
a random action. Finally, we calculate the loss function by
the real reward r and the Q value, and update the trainable
parameters q in the Q function. Here we adopt two sets of
parameters (q and q0 ) in the same shape. One is for selecting
an action and another one is for evaluating an action. They
are updated alternatively.

3.2.4 Monte-Carlo Tree Search

Searching for correct edits is non-trivial due to two key chal-
lenges – exponentially large search space and unnecessary
decision search. First, with the increase of lines of code in
programs and the number of actions, the search space grows
exponentially. This leads to exponential search time using un-
informed search algorithms such as enumerative search [3, 4].
Second, a correct decision search requires both localize and
make precise edits to generate a PM code as illustrated in
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An Example of RL-based Code Generation 

An example of generated code:

(1) executor of 
actions on a state

(2) <string, position>

(3) navigation or edit(4) fewer steps + fewer errors

• Accuracy/Correctness: PM checker pass rate (CPR)
• Labor effort reduction: #line of code (LOC)
• Performance compared to expert code (not shown here) 

Takeaways:
• Ayudante can assist with sophisticated PM-programming tasks through efficient PM code generation and code refining
• Ayudante improves the accessibility of domain-specific programming
• More insights: Monte Carlo tree-search (search efficiency); knowledge transferable among PLs); validation tools are critical

Multi-modal Learning for 
WebAssembly Reverse Engineering 

Hanxian Huang, Jishen Zhao
University of California San Diego

Background and Motivation:
§ WebAssembly (Wasm)

○ A novel assembly-like bytecode format; compiled from source code in high-level 
languages (e.g., C / C++, Rust); stack machine architecture

§ WebAssembly code comprehension is necessary
○ Many (malicious) Wasm modules are distributed through third-party services 
○ Enabling debugging, checking vulnerabilities and maintenance

§ Challenges in WebAssembly comprehension
○ Lacking high-level information, e.g., limited data types
○ Tracking stack behavior is cumbersome and error-prone

Stage1: 
Multi-modal Pre-training

Generalizable 
WasmRev model

Stage2: 
Few-shot Fine-tuning

Methodology:

1). Multi-modal masked language model task: contextual relationship

3). Similar semantics identification task: bridge the gap among modalities 

2). Reordered instruction identification task: control flow relationship 

Evaluation:

Accuracy results on type recovery Takeaways:
• WasmRev assists WebAssembly 

comprehension by providing high-
level semantics

• WasmRev relieves the burden of 
both WebAssembly users and tool 
developers

• WasmRev is data-efficient and 
transferable to new tasks

Takeaways:
• VeriAssist suggests

accurate code sketch, 
testbench with test cases 

• VeriAssist reduces human 
intervention and improves 
productivity

• The proposed process of 
generating test benches, 
and self-code walk-throughs 
significantly improves the 
correctness of RTL code 

Methodology:
§ Leverage LLMs code generation ability, iterative interaction 

ability, and Chain-of-thought ability
§ Design prompts by mimicking human designers behavior: 

○ Reason and solve the design problem step by step
○ Generate testbench with test cases, and walk through code 

to deductively reason the code behavior considering timing, 
given a certain input or a previously failed input test case

○ Based on the simulator feedback and code walk-through 
process, revise code, fix bugs, and meet design 
specifications over multiple iterations

Methodology:

Takeaways:
• Fasor provides a high-accurate hardware-transferable cost 

model that helps with configuration searching
• Fasor exploits tensor program similarity and introduces 

roofline model guidance achieve a faster and better 
configuration searching

Hardware-transferrable cost model
(1) task feature: kernel/input/output shapes, serialized schedule configurations
(2) hardware feature: hardware specifications.
(3) a small calibration dataset with tasks that contribute distinct hardware-specific knowledge 

(1) Empirical parameter options pruning
(2) Profile-guided critical primitives selection

Stage1: Exploiting Pre-tuned Schedule as Search Start Point
Stage2: Fast DRL Search. (Roofline model guided reward)

Background and Motivation:
§ DNN deployment is becoming a bottleneck in DNN delivery
§ Two inefficiencies in tensor program optimization:

○ Cost model training or transferring inefficiency, involving 
costly on-device measurement

○ Search sampling inefficiency, overlooking the potential of 
reusing pre-tuned schedules

Evaluation:
• Fasor improves the compilation efficiency on the Intel CPU and NVIDIA GPU by up to 10.24× and 8.17×.
• Fasor delivers better or equal output code latency performance with 1.22× average speedup.
• Fasor effectively solves the cost model measurement (81%↓) and search (73%↓) inefficiencies.

3 pretraining tasks


